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Responses of a beam undergoing both axial and transverse vibration are studied when
the beam is subjected to transverse forces. The beam is supported by a torsional spring at the
base and has a point mass at the free end. This is a simpli"ed model of a complaint o!shore
structure. It is assumed that the environmental forces are due to waves and current.
The semi-empirical Morison equation is used to model the #uid forces. Waves in this case
are assumed to be random and their heights follow the Pierson}Moskowitz spectrum.
Borgman's method is used to obtain the wave height from the Pierson-Moskowitz spectrum,
and the wave velocities and the accelerations are obtained from the wave height using the
Airy linear wave theory. The wave velocities and accelerations are then used in the Morison
equation to form the #uid forcing function. As a preliminary study, the harmonic force is
used to model the #uid force. When the deterministic harmonic force at various frequencies
is applied, subharmonic resonances of order 1/2 are observed. Parametric studies of random
forcing are performed by varying current velocity and signi"cant wave height.

( 2000 Academic Press
1. INTRODUCTION

In Part 1 of this work [1], we investigated the free response in vacua and the damped free
response in water of a beam as shown in Figure 1. Previously, we used the coupled
non-linear beam model that included both axial and transverse motion to obtain the
response. The equations of motion were solved numerically using the "nite di!erence
approach. The solutions were in terms of transverse and axial displacements, the
displacements in the x and y directions from the reference con"guration as shown in
Figure 2. It was found that the fundamental frequency of the axial motion is twice as that of
the transverse motion. This frequency is induced geometrically. It was shown that the
fundamental frequencies and the contribution of high-frequency e!ects varied with initial
conditions. When damped responses were considered, we showed that the Morison force
can only a!ect the axial motion through transverse motion.

The purpose of this study is to investigate forced responses of a beam with the same
con"guration using the non-linear coupled beam model. In an ocean environment, o!shore
structures may experience forces due to waves, current, and wind. Here, we ignore the wind
force since the part that is subjected to wind force is small compared with the rest of the
structure.

The #uid force exerted by the current and waves include drag, added mass, and inertia
forces which act in the xy plane as shown in Figure 1. There is also a force arising from
shedding vortices which causes the beam to vibrate in the xz plane. There exists a wave
022-460X/00/450875#26 $35.00/0 ( 2000 Academic Press



Figure 1. Schematic of an o!shore structure.

Figure 2. Reference and current midplane con"gurations of the beam.
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slamming force, which is an impulsive force by the waves on the structure above the water
level. Here, we do not consider either the vortex shedding force nor the wave slamming
force. The drag, added mass, and inertia forces are modelled using the Morison equation.
The Morison equation requires coe$cients that are determined by experiments.

The current velocity can be assumed to be constant with time. On the other hand, the
wave velocities and accelerations are oscillatory. Here, we consider random waves;
therefore, a broadband of frequencies are present in the waves.

As a preliminary study, we look at the responses when the structure is subjected to a force
with a single frequency. The forcing frequency is varied so that non-linear properties such as
subharmonics and superharmonics can be shown. When the random Morison force is used,
we "rst look at the e!ect of the varying current velocity without waves, and we look at the
e!ect of varying signi"cant wave height.

We hope to see in the response the non-linear characteristics such as subharmonic
resonance.

2. MATHEMATICAL MODEL

2.1. STRUCTURE

In the "rst part of this work, we derived the governing equation of motion given by [1]
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where o is the density of the structure. A
o
is the cross-sectional area, E is Young's modulus,

I
o

is the area moment of inertia about the neutral axis, M
p

is the point mass, k is the
torsional spring constant, and ¸ is the length of the undeformed beam.

Note that the axial displacement u, transverse displacement v, axial distributed load p,
and the transverse distributed load f are functions of both X and t. The prime and dot
notations are used for spatial and time derivatives respectively. The axial and transverse
displacements are measured from the reference con"guration as shown in Figure 2.

In all cases, the distributed axial force p (X, t) is due to gravity and buoyancy and is
given by
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where o
f

is the density of the surrounding #uid, g is the gravitational acceleration, A
f

is the
cross-section of the displaced volume nr2

outer
, and d is the water depth.
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2.2. FLUID FORCING

2.2.1. ¹he Morison equation
In the "rst part of this study, we used the Morison force to simulate the transverse #uid

force in still water. The expression is given by [2]
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where RG is the acceleration of the beam, ;Q is the acceleration of the #uid, and <
rel

is the
relative velocity of #uid with respect to the structure. The superscript n is used to indicate
that they are normal components (normal to the structure). C

A
is the added mass coe$cient,

C
D

is the drag coe$cient, and C
M

is the inertia coe$cient. The "rst term in equation (4) is the
added mass term, the second is the inertial term, and the third is the drag term.

In vectorial form, we can write the velocity and the acceleration of the structure as

R0 "uR i#vR j, RG"uK i#vK j. (5)

The relative velocity of the #uid with respect to the structure is given by
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where w
y
and w

y
are wave velocities in x and y directions respectively. Note that we assumed

that the current #ows in the y direction only.
The normal components can be obtained by performing the double cross-products
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where the tangent vector 1 (to the structure) is given by

1"i#v@j. (8)

The double cross-product, 1]Q]1, produces a vector that is normal to 1 and is on the
plane de"ned by 1 and Q.

Note that the small angle assumption is used to approximate the sine of the rotation by
the slope and cosine of the rotation by unity. The resulting normal vectors are given by
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Finally, the transverse force is given by
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2.2.2. Current and random waves

According to Isaacson [3], the current velocity in an ocean environment consists of three
components: tidal components ;

tide
, a low-frequency component related to long-term

circulation;
circulation

, and wind-induced drift current;
drift

. They are measured at the water
surface (at X"d ). It is assumed that the current velocity has only a horizontal component.
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The current velocity is then given by
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where d
o
is the smaller of the depth of the thermocline or 50 m. In a laboratory setting, we

can assume that the current velocity is constant with both time and depth without deviating
too much from reality.

In the previous section, we formulated the #uid force using the Morison equation. The
Morison equation requires a knowledge of wave and current velocities. The wave velocities
are more involved since they are oscillatory at random frequencies by nature.

In order to obtain the wave velocities and accelerations, we use the Airy linear wave
theory and the Pierson}Moskowitz spectrum for the wave height. From the Airy linear
wave theory, the wave height is given by

g(y, t)"A cos(ky!ut), (12)

where A is the amplitude of the wave as shown in Figure 3.
The corresponding wave velocities are given by
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and the dispersion relation is given by

u2"gk tanh kd. (14)

Note that the Airy wave theory assumes that the wave height is small compared to the
wavelength or water depth [4].

The one-sided Pierson}Moskowitz spectrum is given by [4]
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Figure 3. Waves.
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where H
s
is the signi"cant wave height, which is the average of the height of the highest

one-third of all waves [5]. Mathematically, it is four times the variance [4]. The frequency
at which the power spectrum is maximum is given by

u
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The wave height is then given by [6]
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In order to carry out the integration, we used the method suggested by Borgman [7]. The
integral is represented as a "nite sum by dividing the power spectrum into N equal areas.
After mathematical manipulations, the wave height is given by
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where N is the number of intervals and uN
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is the average value of the angular frequency at

the nth interval. kN
n
is the wave number that corresponds to uN

n
, and it is obtained using the

dispersion relationship in equation (14). Using the Airy linear wave theory, the wave
velocities are given by
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The wave accelerations are obtained by taking time derivatives. The wave velocities need to
be evaluated at the beam location. That is, y is replaced by v(X, t). Also, x needs to be
replaced by X#u(X, t) since we are using the Lagrangian formulation.

In order to determine the wave velocities, the only variable to be speci"ed is the
signi"cant wave height.

3. RESULTS AND DISCUSSION

For numerical purposes, we consider a beam identical to that used in the "rst part of this
study. The beam and the #uid properties are given in Tables 1 and 2.

The drag coe$cient of 1 is a reasonable value for the Reynolds number of our #ow [8].
For a long cylinder, the inertia coe$cient approaches its theoretical value (the value for
a uniformly accelerated #ow) of 2, and the added mass coe$cient related to the inertia
coe$cient by

C
A
"C

M
!1 (20)

approaches 1. We use these theoretical values for numerical purposes.
Here, we consider either zero initial conditions or initial displacements obtained from the

physical con"guration shown in Figure 4 with zero initial velocities.



TABLE 1

¹he beam properties

Beam properties

Material Aluminum
Young's modulus, E 73 GPa
Density, o 2770 kg/m3
Point mass, M

p
0)236 kg

Torsional spring constant, k 38)8 N/m
Length, ¸ 1)27 m
Outer radius, r

o
0)0127 m

Inner radius r
i

0)011 m

TABLE 2

¹he -uid properties

Fluid properties

Density of water, o
f

999 kg/m3
Water depth, d 1)05 m
Current velocity, ;

c
0)12 m/s

Signi"cant wave height, H
s

0)05}0)2 m
Added mass coe$cient, C

A
1

Inertia coe$cient, C
M

2
Drag coe$cient, C

D
1

Re 2718)7

Figure 4. Initial con"guration.
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The point load is determined such that the end transverse de#ection is 0)05 m. The
expressions for the displacement are given in equation (21):

u(X, 0)"!

1

2 A
P
o

EIB
2

A
X5

20
!

¸X4

4
#A¸2!

EI¸

k B
X3

3
#

EI¸2X2

k
#A

EI¸

k B
2
XB ,

v(X, 0)"!

P
o

EI A
X3

6
!

¸X2

2
!

EI¸X

k B . (21)

Note that these displacements are identical to the initial displacements IC
1
used in Part 1 of

this study.
In free vibration, we found that the fundamental frequency of the transverse motion is

7)75 rad/s in vacua and 6)78 rad/s in still water.
Here, we apply two kinds of distributed transverse loads: a simple harmonic and

a random force. The #uid force due to random waves has many frequency components.
Therefore, it may be useful to consider a transverse load with single frequency "rst. The
distributed axial load in equation (3) is used for all cases.

3.1. HARMONIC FORCING

Let us assume that the distributed transverse load is constant over the length of the beam
and varies harmonically with time. That is
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In order to obtain a reasonable de#ection that is small enough such that the small angle
assumption is valid, the coe$cient of the harmonic function is chosen as o

f
A

f
.

3.1.1. Subharmonics

If we see a periodic response to a forcing frequency that is a multiple of the natural
frequency, it is called a subharmonic response. Similarly, if we see a periodic response to
a forcing frequency that is a fraction of the natural frequency, it is called a superharmonic or
ultraharmonic response. In both cases, the system responds at the lower frequency of the
two. That is, the system responds at the natural frequency for the subharmonics and at the
forcing frequency for the superharmonics [9]. The superharmonics are called ordinary
harmonics in the sense that the system response is at the input forcing frequency [10].

Subharmonics and superharmonics can be seen in both linear and non-linear systems.
Those seen in linear systems are due to exact relations between the natural and forcing
frequencies. That is, the forcing frequency has to be an exact multiple or an exact fraction of
the natural frequency. Recall that there are two parts to the solution to the linear oscillator;
the homogeneous and the particular solution. The homogeneous part oscillates at the
natural frequency, and the particular part oscillates at the forcing frequency. The magnitude
of the homogeneous part is determined exactly from initial conditions, the forcing
frequency, and the amplitude of the force. The subharmonic state enters when the forcing
frequency is twice the natural frequency, and the magnitude of the homogeneous solution
is large compared to that of the particular solution. Similarly, the superharmonic state
enters when the forcing frequency is half the natural frequency, and the magnitude of
the homogeneous solution is small compared to that of the particular solution. There-
fore, subharmonics and superharmonics may or may not appear depending on the
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initial conditions and the amplitude of forcing when a suitable forcing frequency is set of
each case.

Non-linear systems are slightly di!erent in that the non-linearity of the system can
generate stable harmonics that can appear for a range of forcing frequencies, instead of at
exact values of forcing frequency. Again, subharmonics and superharmonics may or may
not appear depending on the initial conditions and forcing amplitude.

The governing equations of motion (1) have second order non-linear terms. This indicates
that the response may exhibit subharmonics of order 1/2 and super-harmonics of order 2.
Therefore, we look for subharmonics for the forcing frequency near twice the natural
frequency and superharmonics near half the natural frequency.

It has been observed that the subharmonics exist in o!shore structures such as landing
ships tanks (LST's) during mooring [11]. Here, let us only consider subharmonic responses.

The forcing frequency is varied from 2 to 18 at 2 rad/s increment. Figure 5 shows the
transverse displacement when zero initial conditions are used. We notice that the response
grows when the forcing frequency approaches the natural frequency (around 7)75}8)48
rad/s). The subharmonic state did not enter here. The subharmonic response can be seen
only when the forcing frequency is 15)5 rad/s, as shown in Figure 6 where the system
responds at half the input forcing frequency. This behavior is similar to what we see in the
linear responses where an exact relationship between the natural and forcing frequency is
required in order for the subharmonic state to enter.

On the other hand, the transverse displacement in Figure 7, obtained using the initial
conditions given in equation (21), shows the subharmonic response for forcing frequencies
that are not exactly twice the natural frequency. In Figures 7(g)}7(i), we observed that the
system responds at the natural frequency when it is forced at a frequency close to twice the
natural frequency. This is characteristic of a non-linear system.
Figure 5. Transverse tip displacement when zero initial conditions are used: (a) u
f
"2, (b) u

f
"4, (c) u

f
"6,

(d) u
f
"8, (e) u

f
"10, (f ) u

f
"12, (g) u

f
"14, (h) u

f
"16, (i) u

f
"18 rad/s.



Figure 6. Transverse tip displacement when u
f
"15)5 rad/s.

Figure 7. Transverse tip displacement when IC
l

is used: (a) u
f
"2, (b) u

f
"4, (c) u

f
"6, (d) u

f
"8,

(e) u
f
"10, (f ) u

f
"12, (g) u

f
"14, (h) u

f
"16, (i) u

f
"18 rad/s.
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3.2. EFFECT OF CURRENT

Figure 8 shows the transverse and axial displacement plots for current velocities of 0)8,
1)2 and 1)6 m/s. Note that the steady state response can be found by solving the equation of
motion (1) by setting the time derivatives equal to zero, or
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The subscript ss is used for the steady state response. It is not di$cult to solve the steady
state response numerically. The steady state axial and transverse displacements along the
beam are shown in Figure 9. The steady state transverse tip displacements are 0)00154,
0)00346, and 0)00616 m for ;

c
"0)08, 0)12, and 0)16 m/s respectively. The ratio of the

transverse tip displacements is 1 : 2)25 : 4. Looking at this ratio, we note that the transverse
displacement is proportional to the current velocity squared. This can also be shown by
manipulating equations (23) and (24). Therefore, we can write
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where k
v
is the proportionality constant that depends on the location of the beam. Using

the data, v
ss
(¸)"0)00616 m when ;

c
"0)16 m/s, the proportionality constant for X"¸

is found to be 0)241 s2/m. On the other hand, the steady state axial displacement
Figure 8. Tip displacements when the beam is subjected to current: **, ;
c
"0)08; 22, ;

c
"0)12;

} ) } )} , ;
c
"0)16 m/s. (a) u (¸, t), (b) v(¸, t).



Figure 9. Steady state response when the beam is subjected to current: **, ;
c
"0)08; } } }, ;

c
"0)12;

} ) } )} , ;
c
"0)16 m/s. (a) u

ss
(¸, t), (b) v

ss
(¸, t).
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is not proportional to the current velocity squared. Instead, it is determined using
equation (23).

Now, let us look at the transient response. The maximum transverse displacements are
plotted in Figure 10 for the current velocities 0)08, 0)12, 0)16, 0)2, 0)3, and 0)4 m/s. Note that
the abscissa is the current velocity squared. The "gure shows decreasing slope for increasing
current velocities, which means that the maximum transverse tip displacement is
proportional to the current velocity to the power slightly less than 2, if it is proportional
at all.

As the current velocity increases, the drag increases. This is analogous to increasing the
damping coe$cient in the linear system. As the damping coe$cient increases in the linear
system, the damped natural frequency decreases. Therefore, in our case, increasing the
current velocity slows the response. Figure 11 shows corresponding physical elongation of
the beam for current velocities, 0)08, 0)12, and 0)16 m/s. Surprisingly, the magnitudes are
about the same. In fact, the time response looks almost identical. We also notice that the
elongations do not decay with time. Now, let us look at the energies of the system. Figures
12 and 13 show the potential and kinetic energies of the system when ;

c
"0)08 m/s. The

bending energy and the potential energy stored in the spring approach a non-zero value as
time passes. The membrane energy and translational kinetic energy do not decay nor
approach steady state value. It was shown in Part 1 that the membrane energy is directly
related to the elongation of the beam. It is no surprise that the shapes of the membrane
energy and the elongation resemble one another. The non-decaying elongation, membrane
energy, and translational kinetic energy indicate that the Morison force is unable to damp
the axial motion as shown previously in damped free vibration. However, the axial motion
is small compared to the transverse motion so that the steady state analysis in equations
(23) and (24) are still valid. The total energy shown in Figure 14 approaches a non-zero
value, which is mainly the potential energy stored in the system.



Figure 10. Peak amplitude of tip displacement.

Figure 11. Elongation of the beam: (a) ;
c
"0)08, (b) ;

c
"0)12, (c) ;

c
"0)16 m/s.
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3.3. EFFECT OF RANDOM WAVES

The signi"cant wave height is varied such that the peak angular frequency is varied from
2 to 18 rad/s at 2 rad/s interval. That is, the corresponding signi"cant wave heights,



Figure 12. Potential energy for ;
c
"0)08 m/s: (a) PE

bending
, (b) PE

membrane
, (c) PE

spring
.

Figure 13. Kinetic energy for ;
c
"0)08 m/s: (a) KE

translation
, (b) KE

rotation
, (c) KE

point mass
.
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Figure 14. Total energy for ;
c
"0)08 m/s.

Figure 15. Pierson}Moskowitz spectrum: (a) u
peak

"2, H
s
"0)3957; (b) 4, 0)0989; (c) 6, 0)044; (d) 8, 0)0247;

(e) 10, 0)0158; (f ) 12, 0)011; (g) 14, 0)0081; (h) 16, 0)0062; (i) 18 rad/s, 0)0049.
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from equation (16) are 0)3957, 0)0989, 0)0440, 0)0247, 0)0158, 0)0110, 0)0081, 0)0062, and
0)0049 m. The Pierson}Moskowitz spectra are plotted in Figure 15. In the laboratory
setting, a signi"cant wave height of 0)1 m may be plausible. Note that the magnitude of
power spectral density decreases with decreasing signi"cant wave height or increasing peak
frequency. For u

peak
"2 rad/s, the wave heights, g (y"0, t) and g(y, t"0), are plotted in

Figures 16(a) and 16(b). The corresponding horizontal and vertical wave velocities at t"0
Figure 17. Wave velocities for u
peak

"2 rad/s: (a) horizontal velocity, (b) vertical velocity.

Figure 16. Wave height for u
peak

"2 rad/s: (a) wave height versus time, (b) wave height versus horizontal
co-ordinate.
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and y"0 are plotted as a function of depth in Figure 17(a) and 17(b). For u
peak

"18 rad/s,
similar plots are shown in Figures 18 and 19. Note that the magnitude of wave heights and
velocities also decreased with increasing peak frequency.

The transverse displacements are plotted in Figure 20 when zero initial conditions are
used. We observe a beating phenomenon in many of the responses. They are not well
de"ned as in the linear case. The magnitude of the response generally decreased with
Figure 19. Wave velocities for u
peak

"18 rad/s: (a) horizontal velocity, (b) vertical velocity.

Figure 18. Wave height for u
peak

"18 rad/s: (a) wave height versus time, (b) wave height versus horizontal
co-ordinate.



Figure 20. Transverse tip displacement when zero initial conditions are used: (a) u
peak

"2, (b) u
peak

"4,
(c) u

peak
"6, (d) u

peak
"8, (e) u

peak
"10, (f ) u

peak
"12, (g) u

peak
"14, (h) u

peak
"16, (i) u

peak
"18 rad/s.

Figure 21. Power spectral density plots for the transverse tip displacements when zero initial conditions are
used: (a) u

peak
"2, (b) u

peak
"4, (c) u

peak
"6, (d) u

peak
"8, (e) u

peak
"10, (f ) u

peak
"12, (g) u

peak
"14,

(h) u
peak

"16, (i) u
peak

"18 rad/s.
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Figure 22. Axial tip displacement when zero initial conditions are used: (a) u
peak

"2, (b) u
peak

"4, (c) u
peak

"6,
(d) u

peak
"8, (e) u

peak
"10, (f ) u

peak
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increasing peak frequency. This is because the wave velocities decrease with the peak
frequency. Figure 21 shows power spectral density plots for the transverse tip
displacements. The data points are sampled at 0)0005 s intervals. We obtain a consistent
peak at about 1 Hz. This frequency must be the damped natural frequency of the system.
Note that it is di!erent from the damped natural frequency obtained in still water or the
damped natural frequency when there is only current. This is because the damping force is
di!erent in each case. Figure 22 shows the corresponding axial displacements. The general
shape of the axial response is similar to those shown in Part 1: the fundamental frequency of
the axial motion is twice that of the transverse motion, and the maximum of each peak of
the dominant axial motion is the same, so that the dominant axial motion seems to have
a ceiling. It was shown in Part 1 that this is due to the geometry of the system. Figure 23
shows the elongation of the beam as a function of time. The amplitude in most cases are
about 2]10~8 m. When u

peak
"2 and 4 rad/s, we observe spurious peaks in elongations.

Figures 24 and 25 show the potential and kinetic energies when u
peak

"10 rad/s. The
energies have some of the same characteristics observed in the free vibration: shape of
elongation resembles the shape of the membrane energy, the potential energies and the
kinetic energies are in phase, the potential energies and the kinetic energies are 1803 out of
phase. Figure 26 shows the total energy of the system. It shows that the total energy does
not decay. Instead, it #uctuates randomly due to the random forcing.

The transverse displacements are plotted in Figure 27, where the initial displacements in
equation (21) are used. The power spectral densities are plotted in Figure 28. The dominant



Figure 23. Elongation when zero initial conditions are used: (a) u
peak

"2, (b) u
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Figure 24. Potential energies when zero initial conditions and u
peak

"10 rad/s are used: (a) PE
bending

,
(b) PE

membrane
, (c) PE

spring
.
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Figure 25. Kinetic energies when zero initial conditions and u
peak

"10 rad/s are used: (a) KE
translation

,
(b) KE

rotation
, (c) KE

point mass
.

Figure 26. Total energy when zero initial conditions and u
peak

"10 rad/s are used.
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frequency of all responses is the damped natural frequency at about 1 Hz. We observe
subharmonic resonances in Figures 29(c)} (i). Note that we observe that the subharmonic
resonance occurs for a relatively wide range of the peak frequency, u

peak
. This is due to the

fact that the transverse force is random and the forcing frequency is spread out around



Figure 27. Transverse tip displacement when non-zero initial conditions are used: (a) u
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Figure 28. Power spectral density plots for the transverse tip displacements when non-zero initial conditions are
used: (a) u
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Figure 29. Axial tip displacement when non-zero initial conditions are used: (a) u
peak
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u
peak

. Figure 30 shows the elongation of the beam. The amplitudes are about 10~6 m for all
cases. It should be noted that the responses look similar to the ones we have seen in the
damped free vibration where water was still. That is, the damping e!ect in the Morison force
must be dominant when non-zero initial conditions are applied. Figures 31 and 32 show
potential and kinetic energies of the system when u

peak
"10 rad/s. Figure 33 shows the

total energy of the system. These plots show that the energies decay with time due to
damping. After the transient response dies out, we expect to see similar random patterns as
when zero initial conditions were used.

4. SUMMARY AND CONCLUSIONS

As a continuation of Part 1, we studied the forced response of beam under the
environmental loading due to current and waves. The #uid force was modelled by the
Morison equation, and the waves were modelled as random using the Pierson}Moskowitz
spectrum and Airy linear wave theory.

When the harmonic force was applied, we observed the subharmonic resonance for the
forcing frequency near the natural frequency.

When only current was present, the transverse o!set from the vertical at the tip was
proportional to the current velocity squared. The magnitude of highest transverse peak in



Figure 30. Elongation when non-zero initial conditions are used: (a) u
peak

"2, (b) u
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Figure 31. Potential energies when non-zero initial conditions and u
peak

"10 rad/s are used: (a) PE
bending

,
(b) PE

membrane
, (c) PE

spring
.
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Figure 32. Kinetic energies when non-zero initial conditions and u
peak

"10 rad/s are used: (a) KE
translation

,
(b) KE

rotation
, (c) KE

point mass
.

Figure 33. Total energy when non-zero initial conditions are used.
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the transient response did not quite follow the same rule. Instead, the magnitudes were
slightly less than what was predicted by the current-velocity-squared rule.

When the random #uid force was applied, the subharmonic resonance was not observed
when zero initial conditions were used. When the non-zero initial conditions were used, the
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subharmonic resonance of order 1/2 was observed for a wide range of signi"cant wave
heights. In all cases, the axial displacement had the same characteristics as in the free
vibration case. The dominant frequency was twice that of the transverse vibration, and
the maximum of each peak of the dominant axial motion is the same. The amplitude of
elongation for various peak frequencies were close to each other for each initial condition.

When zero initial conditions were used, we observed spurious peaks in elongations for
u

peak
"2 and 4 rad/s. The total energy of the system varied randomly with time. When

non-zero initial conditions were used, we saw uniform elongations for all cases. The
responses look similar to those for the damped free cases. The total energy of the system
decayed with time. However, we expect that the random e!ect may become more
pronounced after the transient response dies out.
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